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Abstract— In this paper, we present a global and
local two-stage multi-UAV planning solution that
incorporates A*, model predictive control (MPC),
and artificial potential field (APF) to realize the
path planning of UAV clusters in dynamic environ-
ments. This navigation solution can empower multi-
ple UAVs to avoid obstacles and collaborate in com-
plex environments. The video can be accessed at the
following link: https://youtu.be/RkOqEFh1KFM

I. INTRODUCTION

With the growing application of UAVs, re-
search on path-planning methods has become
a focus of attention. The state of art path
planning methods are usually divided into two
parts: global and local planning. The typical
methods for global planning contain heuris-
tic methods (e.g. A*[1], D*[2]), sampling-based
methods (e.g. RRT[3], RRT*[4]), and optimiza-
tion methods (e.g. PSO[5], ACO[6]). The typ-
ical methods for local planning include rolling
window algorithms[7], APF[8], and case-based
learning methods[9].
Inspired by collaborative multi-UAV missions

in sparse woods, we present a two-stage UAV
path planning solution. The structure of this
planning solution is shown in Fig.1.
The main innovations of this paper are�
• A modified RRT* algorithm is proposed to

obtain more accurate path planning results
for a single UAV system.

• Implementation of a variant of the A*
global planning algorithm for equal-level
multi-UAV.

• Establishing a local planning and control
method for UAVs combining MPC, artifi-
cial potential field, and PID methods.

Our solution is designed to address the path
planning challenges for multiple UAVs, facili-
tating conflict resolution and formation control.
Compared to the state-of-the-art methods, our
method is still deficient in respect of the path
of optimality.

Fig. 1: System structure

II. ROBOT MODEL

We select an X-shaped quadrotor UAV and
express the orientation with Euler angles. We
only consider the effect of propeller force,
torque, and gravity of the UAV.

A. Propeller Model
The thrust force and moment of a propeller

can be expressed as{
fi = kfω

2
i

τi = kτω
2
i

, (1)

where ωi is the rotate speed of the i-th propeller,
kf , kτ are the thrust coefficient and reverse
torque coefficient.
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B. UAV Model
The linear motion equation of the UAV un-

der external force F⃗ and the angular motion
equation of the UAV under external torque M⃗
are ∑

F⃗ = m · dV⃗
dt
, (2)∑

M⃗ =
dL⃗

dt
, (3)

where m is the mass, V⃗ is the speed vector, and
L⃗ is the angular momentum vector.

In body frame

F⃗ =
[
0 0 U1

]T −Rϕ,θ,ψ
[
0 0 mg

]T
, (4)

M⃗ =
[
lU2 lU3 U4

]T
, (5)

where

U1 = (f1 + f2 + f3 + f4)

U2 =
√
2
2 (−f1 + f2 − f3 + f4)

U3 =
√
2
2 (−f1 + f2 + f3 − f4)

U4 = (−τ1 − τ2 + τ3 + τ4)

, (6)

and l is the arm length, ϕ, θ, ψ are the Euler
angles, Rϕ,θ,ψ is the rotation matrix under the
Euler angles.

Transfer the resultant force in eq.4 to ground
frame and apply eq.2, we get v̇x = (cosϕ sin θ cosψ + sinϕ sinψ)U1/m

v̇y = (cosϕ sin θ sinψ − sinϕ cosψ)U1/m
v̇z = cosϕ cos θ · U1/m− g

,

(7)
where vx, vy, vz are the velocity components of
the UAV.
Transfer the resultant torque in eq.5 to

ground frame and apply eq.3, we get Mx = ω̇x · Ix + ωy · ωz (Iz − Iy)
My = ω̇y · Iy + ωx · ωz (Ix − Iz)
Mz = ω̇z · Iz + ωx · ωy (Iy − Ix)

, (8)

where ωx, ωy, ωz are the angular velocity
components of the UAV, Ix, Iy, Iz are the
momentum of inertia of the UAV in three axes.
Apply small angle approximation[

ωx ωy ωz
]T

=
[
ϕ̇ θ̇ ψ̇

]T
, (9)

and combine eq.7 and eq.8, we can get the math
model of the quadrotor UAV[10]:

ẍ = (cosϕ sin θ cosψ + sinϕ sinψ)U1/m
ÿ = (cosϕ sin θ sinψ − sinϕ cosψ)U1/m
z̈ = cosϕ cos θ · U1/m− g

ϕ̈ =
[
l · U2 + θ̇ψ̇ (Iy − Iz)

]
/Ix

θ̈ =
[
l · U3 + ϕ̇ψ̇ (Iz − Ix)

]
/Iy

ψ̈ =
[
U4 + ϕ̇θ̇ (Ix − Iy)

]
/Iz

(10)
C. Workspace and Configuration Space
In our path planning problem, we only focus

on the position of the UAVs and don’t care
about their orientation, so we used the differen-
tial flatness model when controlling the UAVs.
In this way, the workspace can be simplified to
R3 (3D position), and the configuration space
can be simplified to R3 × S1 (3D position and
yaw).
From eq.10, we know that the height and

yaw control are independent, but the horizontal
control is coupled with pitch and roll control,
therefore we can control the UAV with 4 com-
mand variables: x, y, z, ψ, and we can always
set ψ = 0 because we only care about the
position.
PID controller is selected for position and

orientation control.

III. MOTION PLANNING
In this section, we will introduce the planning

methods, global planning, and local planning
respectively. Due to the page limitation, the
pseudocode of the algorithms covered in this
section will be given in the presentation.
A. Global Planning
1) Modified RRT*: In the global planning

section, we have modified the traditional RRT*
algorithm to make the plan. Specifically, the
RRT* algorithm we used before selects the
parent node only one time after inserting the
new node, so we add a step after choosing the
parent node for a new node, which is we will
refresh all the parent nodes in the parent range,
to find if the new inserting node could provide
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Fig. 2: Modified A* algorithm. (a) The simulation process. (b) The generated path. (c) The map
updating process.

them a shorter way to the starting node, as Fig.6
shows.

Fig. 3: Modified the traditional RRT* to make
global planning. (a) Traditional RRT*. (b) M-
RRT*
2) Equal-level multi-core A* algorithm: We

present an A* algorithm for the global planning
of Equal-level multi-UAV tasks. This algorithm
considers all UAVs in the obstacle space and
updates the global map in each planning loop to
enable individual UAVs to obtain heuristically
generated trajectories without colliding with
other UAVs. The global map update and UAV
evasion are shown in Fig.2(c)

B. Local Planning

1) MPC: In the local planning section, we
first use MPC control to avoid moving obstacles
and decrease the energy cost during the process,
the equation of the MPC is shown as follows:

min
u

N−1∑
k=0

∥xk − rk∥2Q + ∥uk∥2R

s.t. xk+1 = Axk +Buk,

Ctxk ≥ yt,

umin ≤ uk ≤ umax,

(11)

where N is the prediction horizon, rk is the
reference trajectory, and Q and R are positive
definite weighting matrices.

Considering that the solver could only handle
linear constraints, so we have to transfer the
moving object to a linear constraint. In detail,
we make a new plane between the UAV and
the moving obstacle which is at a given meter
from the moving obstacle as Fig.4 shows, and
it could certificate that the UAV will not hit on
the moving obstacle.

Fig. 4: Transfer the moving object to a linear
constraint.
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2) Artificial Potential Field: We also imple-
mented an artificial potential field to avoid local
obstacles. When the drones go close enough to
obstacles (including other drones), they will be
repelled away by a force. We choose the closest
point on each obstacle to compute the repel field
to simplify the model, as shown in Fig.5.

Fig. 5: Choose the closest point on the obstacle
to compute the repel field

For drone flocks, we added an attraction field
between each drone and its closest neighbor. We
also add an attraction field between each drone
and its goal to prevent it from being misguided
away, because of other convoluted potential
fields, from the path given by the global planner
to somewhere else. The equation below explains
the principle of our artificial potential field, in
which Vdir denotes the direction vector and I
denotes intensity.

{
Vdir = Pself − Poth/obs (Repel field)
Vdir = Poth/obs − Pself (Attraction field)

(12)

 Urep = I × Vdir × (1/dis2 − 1/ran2)

Uatt = I × Vdir × dis2
(13)

IV. RESULTS
A. Results of Subsystem Simulation
1) Comparative Experiments on Global Plan-

ning Methods: To determine the specific global

planning method used, we designed the simu-
lation experiment used to compare the RRT*,
Modified RRT*, and A* algorithms. The results
of this experiment are shown below:

Fig. 6: Path planning for single UAV with
modified A* and RRT*

TABLE I: Data for modified A* and RRT*

Method Time
cost
(s)

Path
length
(m)

Energy
consumption
(Norm)

A* 9.13 7.27 0.9070
RRT* 37.72 13.93 1.0000

M-RRT* 36.27 7.50 0.9515

where all RRT methods used 500 iterations
as the hyperparameter.
The experiment results show that the mod-

ified RRT* method obtains significantly bet-
ter path lengths than the RRT* method in
approximate computation time, while the A*
method obtains the best path lengths in the
shortest computation time. Considering that the
A* algorithm can solve the multi-UAV path
conflict problem by applying an update to the
global map, while the RRT*-based methods
are difficult to extend to multi-UAV scenarios,
we chose to use the A* method as the global
path planning method in the subsequent exper-
iments.
An experiment has been designed for the

modified A* method, where the start and target
points of two UAVs are designed to produce
path-conflicting configurations.
In this experiment, the trajectories generated

by the traditional A* algorithm resulted in
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UAVs colliding with each other at the conflict
points, while the modified A* method resulted
in the separation of the generated trajectories
and successfully solved the UAV collision prob-
lem as shown in Fig.2(a).
2) Local planning experiment: The experi-

mental results show that the MPC caused the
UAVs to avoid approaching a moving obstacle,
and the artificial potential field caused the UAVs
to maintain a safe distance when the distance
between the UAVs was less than the range of
the artificial potential field.

Fig. 7: Avoiding moving obstacle with MPC and
known UAV with potential field

B. Overall Experiment
In the overall experiment, we designed a

formation of 27 UAVs to transform from an
initial 18-shaped pattern to a TUD badge-
shaped pattern after passing through a space
where obstacles are present. During the exper-
iment, the 27 UAVs completed the planning
tasks for each subsystem while no UAVs collided
throughout.

Fig. 8: Overall experiment for the whole system.

V. DISCUSSION
A. Methods Discussions
RRT*, Modified RRT* and A* are the al-

ternatives we are planning for globally. This

problem has a time and results trad-off. As
illustrated in Fig.9, it is evident that the A*
algorithm results in points closer to the origin,
indicating superior algorithmic performance.

Fig. 9: Analysis of global planning methods. The
data in the figure are obtained from experimen-
tal data with interpolation analysis.

The Two-Stage Multi-UAV Planning Solution
we provide has advantages in the perspective of
multi-UAV formation and UAV collision avoid-
ance in sparse forests, but due to its use of more
planning methods, it can lead to still incorrect
interference between UAVs in more complex
and narrower scenarios, which is fatal for some
special cases. In global planning, limited by the
discrete maps used by the A* algorithm, the
corners of the planned paths are not continuous,
so the resulting maps are sub-optimal solutions.
Also due to the use of MPC and artificial poten-
tial field methods, we need to carefully adjust
the hyperparameters to make them match the
real-time and task requirements

B. Future Work
In the future, we will focus on three aspects

of this research based on weaknesses�
• Solving angle problems in uniformly dis-

crete maps[11] using interpolate methods.
• Extending the MPC method to nonlinear

models to further increase accuracy.
• Using the state classification design AFP

applicable to narrow environment.
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