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Abstract

Open-world object manipulation has emerged as a popular research frontier in robotics. While recent
advances in vision-language-action (VLA) models have achieved impressive results, they typically rely
on large amounts of task-specific action data for training. This thesis aims to enable a manipulator
to perform open-world object manipulation tasks without any action demonstrations. Instead of learn-
ing direct action mappings, we focus on understanding object dynamics. To this end, we propose a
novel framework that builds an explicit world model for open-world object manipulation. The framework
integrates open-set segmentation and grasping, 3D digital twin reconstruction, and simulation-based
strategy sampling within a unified framework. At the core of our approach lies the construction of a phys-
ically grounded digital twin of the environment, which enables the framework to simulate and evaluate
diverse interaction strategies before real-world execution. Experimentally, the proposed framework is
able to perform multiple open-set manipulation tasks, such as “put the banana into the basket”, “stack
the green cube onto the yellow cube”, and “place the blue cup upside on the wooden box”. These re-
sults are obtained without any task-specific action demonstrations, demonstrating strong generalization
and autonomy compared to existing closed-set or imitation-based systems.
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1
Introduction

1.1. Background
Open-world object manipulation has recently become a popular research frontier in robotics, aiming to
enable robots to perform diverse tasks commanded by humans in unstructured environments. In such
settings, robots must have the ability to perceive and reason about previously unseen objects, infer
task goals from natural language, and interact physically with the world, without relying on pre-defined
categories or manually curated policies. This open-ended nature introduces fundamental challenges
in semantic and physic understanding.

Recent advances in large language models (LLMs) and vision-language models (VLMs) have demon-
strated remarkable capabilities in factual reasoning, conceptual understanding, and commonsense
inference [1, 2, 3, 4], enabled by large-scale pretraining on Internet-scale multimodal data. Despite
their impressive generalization across perception and language tasks, there remains a substantial gap
between these foundation models and the requirements of embodied robotic systems. Specifically,
LLMs and VLMs still lack a grounded understanding of physical dynamics and low-level robot control,
which are essential for translating abstract task instructions into executable manipulation behaviors.

To bridge this gap, recent studies have explored Vision-Language-Action (VLA) models [5, 6, 7, 8, 9],
which leverage large-scale vision-language models to infer the robotic actions for different tasks. VLA-
based systems have demonstrated impressive performance across a variety of manipulation tasks,
showing the potential of integrating multimodal reasoning with embodied control. However, training
such models remains non-trivial, as they require vast amounts of task-specific action data, which are
costly to collect. Furthermore, the learned policies often need fine-tuning when transferred to robots
with new embodiments or sensing configurations, limiting their generalization to truly open-world set-
tings.

To overcome these limitations, a growing body of research has turned to the concept of a world model—
a representation that allows reasoning about how the environment reacts and evolves under different
agent interactions. Instead of directly mapping sensory inputs to motor commands, world-model-based
approaches aim to learn or construct a model of the world’s dynamics, enabling prediction, simulation,
and planning in a physically grounded manner. This paradigm shifts the focus from learning to act
to learning how the world works, which offers stronger generalization to unseen objects, tasks, and
environments.

With the growing computational power thanks to the hardware development, we see recent image-
based and video-based world models [10, 11, 12, 13, 14] leverage the inherent world knowledge of
video diffusion models [15, 16] to understand the temporal and spatial relationships of the generated
world. However, while these models can generate visual compelling results, they inherently lack 3D
consistency, due to the 2D training data and underlying 2D representation.

In contrast, explicit world models represent the 3D environment through geometrically and physically
meaningful components, such as 3D object meshes. By leveraging physically grounded simulators,

1
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which inherently encode real-world dynamics such as gravity, friction, and collision response, these
explicit representations enable dynamic reasoning and interaction simulation, making them particularly
suitable for real-world manipulation and task planning. Given that some existing simulators can already
provides reliable physical properties [17], the remaining challenge lies in constructing an accurate digital
twin of the real-world scene — that is, building a digital twin that faithfully captures the geometry, pose,
and other physical information (e.g. material) of the observed objects. Once such a digital twin is
established, the robot can use it to simulate, evaluate, and select feasible interaction strategies before
execution in the physical world.

1.2. Problem Statement
In an open-world object manipulation task, the set of objects and tasks is not fixed or predefined. Unlike
structured industrial environments—where the robot interacts with known objects under well-calibrated
conditions—an open-world setting involves previously unseen objects, diverse spatial configurations,
and natural language task instructions that can vary in form and complexity. In such a setting, a robot
must not only detect and localize arbitrary objects, but also interpret task intent and reason about the
physical consequences of potential actions.

Formally, given the visual observations I of the scene (e.g., RGB-D images), and a natural language
task instruction C, and a world model W , the objective is to sample a set of executable manipulation
actions a, evaluate them and find an a∗ that successfully achieves the goal described by C in the real
world. That is,

W : pW (τ | I, a), (1.1)

where τ = (s, o) is the future states and observations generated by world model W , given the current
observation I and sampled action a. Then,

a∗ = arg max
a∈A(I)

Eτ∼pW (·|I,a)[R(C, τ)], A = {ai} ∼ π(· | I, C), i = 1, ..., N, (1.2)

where A denotes the space of sampled candidate actions from a sample policy π(· | I, C), parame-
terized by end-effector poses, and R(C, τ) is a score function that measures the score of τ given the
natural language task instruction C.

Thus, in this thesis, we focus on how to build an explicit world model that can generate plausible future
states and observations τ . We also designed a prior-based sample policy π and a VLM-based result
checker to measure the success score of τ .

Besides, the scope of this work is limited to manipulation tasks involving rigid objects, as deformable
and articulated objects exhibit significantly more complex dynamics and require additional modeling of
elasticity, joint constraints, and contact deformation. These aspects are beyond the scope of this thesis
and are left for future research.

1.3. Contribution
This thesis addresses the above challenge by constructing an explicit, physically grounded world model
from visual observations, enabling the robot to reason about object dynamics and to predict and evalu-
ate the success probability of candidate actions. We present a novel explicit-world-model-based frame-
work for performingmanipulation tasks in open-set environments that involve previously unseen objects
and tasks, without requiring any task demonstrations or tele-operated action data.

While prior work such as [18] explores a related concept of constructing an explicit world model within
a high-fidelity simulator and evaluating action candidates for real robots, their approach is restricted to
single articulated-object manipulation and the task goal focuses solely on achieving target articulation
angles. In contrast, our work tackles the more general problem of open-set manipulation task involving
multiple objects and diverse interaction goals.

The contribution of this thesis are listed as follows:
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• An explicit-world-model-based manipulation framework that integrates open-set object segmen-
tation and grasping, 3D digital twin reconstruction, and simulation-based strategy sampling for
open-world object manipulation.

• A dynamic digital twin construction pipeline that generates object meshes from RGB images and
aligns their poses to real-world observations to enable real-world-consistent simulation.

• A simulation-guided action evaluation method that estimates the success probability of candidate
strategies by reasoning over physically simulated outcomes.

• We demonstrate the system’s effectiveness across diverse open-set manipulation tasks involving
multiple unseen objects on a real robot.

1.4. Document Structure
The remainder of this thesis is organized as follows: Chapter 2 reviews literature related to four key re-
search areas: grasping pose prediction, open-set detection and segmentation, vision-language-action
models, world models and motion planning for manipulators. Chapter 3 introduces the overall frame-
work proposed in this thesis and provides a detailed description of the methodology we use. Chap-
ter 4 presents the experiment results, where we examine the digital twin construction accuracy and
real-world tasks performance, and present our analysis. Finally, Chapter 5 concludes the thesis by
discussing the findings, identifying limitations, and outlining potential directions for future research.



2
Related Works

This chapter reviews existing research related to the proposed framework. We begin with grasp pose
prediction, which directly corresponds to the grasping module adopted in this work. Next, we discuss
open-set object detection and segmentation, which enables the perception of arbitrary objects beyond
predefined categories. We then review recent progress in Vision-Language-Action (VLA) models, high-
lighting their strengths and limitations in robotic tasks. Furthermore, we examine advances in world
model construction, including both image/video-based and explicit world models. Finally, we discuss
existing methods for manipulation planning.

2.1. Grasping Pose Prediction
Analytic grasp planning methods (e.g., [19]) typically adopt a multi-stage pipeline, where an input RGB-
D image or point cloud is sequentially processed through several stages, such as segmentation, object
classification, and pose estimation. However, errors introduced at any of these intermediate stages
can accumulate and significantly degrade the overall grasp success rate.

An alternate approach is to use deep learning to learn grasp representations. Some early work use the
form of oriented 2D grasp rectangles [20, 21, 22, 23, 24] based on RGB-D image input. Lenz et al.[20]
proposed a two-stage method that a small network is first used to search all potential rectangles and a
larger network is then used to find the top-ranked rectangle from these candidates. Fig 2.1 and Fig 2.2
illustrate their pipeline and experiment results.

Figure 2.1: The two-stage pipeline from [20].

However, grasp rectangle representations are constrained in the degrees of freedom of the resulting
grasp poses, thereby limiting their applicability in more general settings. To address this, subsequent
research has focused on predicting full 6-DOF grasp poses. Some studies approach this by evaluating
a set of candidate grasps, framing the problem as a sample-and-evaluate pipeline [25, 26, 27, 28], in
which grasp candidates are densely and uniformly sampled throughout the scene and then evaluated
using a learned grasp quality network. Meanwhile, other researchers propose end-to-end methods
[29, 30, 31], where networks are trained to directly process the observed point cloud and output the
most feasible 6-DOF grasp poses without explicit candidate sampling. Fig 2.3 illustrates the end-to-end
architecture of GSNet from [32].

4
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Figure 2.2: Left: Experiment results with rectangles corresponding to robotic grasps. Green lines correspond to robotic gripper
plates. Center: A Baxter robot “Yogi” successfully executing a grasp detected by algorithm in [20]. Right: The grasp detected in

the RGB (top) and depth (bottom) images obtained from Kinect.[20]

Figure 2.3: GSNet architecture. The upper row show the process of cascaded graspness model and the lower row shows the
grasp operation model. In cascaded graspness model, point encoder-decoder outputs C-dim feature vectors for the input N
points. A point-wise graspable landscape is generated and M seed points are sampled from it. The seeds are then used to
generate view-wise graspable landscapes, and select the grasp view. In grasp operation model, the seeds are grouped in
cylinder regions. The grasp scores and gripper widths are predicted for each group and used to output M grasp poses.[32]

2.2. Open-set Detection and Segmentation
Traditional vision-based detection and segmentation tasks are usually restricted to a fixed set of pre-
defined object classes, represented as integer labels. To enable open-set detection, a model must
be capable of processing both visual and textual information. Recent advances in vision-language
modeling provide promising directions. CLIP [2] was one of the pioneering works in this area. By jointly
training an image encoder and a text encoder via contrastive learning, CLIP successfully aligned image
features with text features, as shown in Fig 2.4.

Despite its strong visual-textual alignment and generalization ability, CLIP operates only at the whole
image level and lacks the capacity to localize or differentiate multiple elements within an image. To
address this limitation, Li et al. [33] introduced GLIP, which integrates the ideas of CLIP with traditional
object detectors. GLIP first generates region proposals from global image features and then extracts
features for each proposal, aligning them with the corresponding text descriptions. As the authors
describe, this approach “unifies detection and grounding by reformulating object detection as phrase
grounding.” Consequently, the detection results are no longer constrained by a fixed label set but can
extend to arbitrary textual descriptions, including abstract concepts, thus realizing open-set detection.

Building on this foundation, Grounding-DINO [34] further improves performance by replacing the con-
ventional two-stage detector with the transformer-based detector DINO (DETR with Improved deNois-
ing anchOr boxes) [35]. To advance this line of research, the authors proposed Grounded-SAM [36], a
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Figure 2.4: The contrastive pre-training approach adopted by CLIP [2]. The authors jointly trained an image encoder and a text
encoder to predict the correct pairings of a batch of (image, text) training examples.

compositional framework that combines Grounding-DINO with Segment Anything (SAM) [37], enabling
accurate segmentation of target objects in an open-world setting.

Figure 2.5: Caption

2.3. Vision-Language-Action Models For Robotics
Recent progress in large foundation models—particularly large language models (LLMs) [1, 3, 38, 39,
40]—has led to remarkable advances in natural language understanding, reasoning, and generation.
Meanwhile, vision-language models (VLMs) [2, 4, 41] extend these capabilities by jointly modeling vi-
sual and textual modalities, enabling multimodal perception, understanding, and generation. Together,
these foundation models encode broad world knowledge, demonstrate strong reasoning capabilities,
and generalize effectively to novel tasks and scenarios, making them highly adaptable across a wide
range of domains.

Despite these achievements, the abilities of LLMs and VLMs remain largely constrained to the digital
domain, limiting their direct impact on embodied, real-world tasks. To bridge this gap, recent research
has explored leveraging the perceptual and reasoning capabilities of foundation models to guide robotic
task execution, effectively extending their intelligence into the physical world. This emerging research
direction has given rise to Vision-Language-Action (VLA) models [5, 6, 7, 8, 9], which can be broadly de-
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Figure 2.6: Overview of the π0 framework [7]. The model is trained via a flow-matching VLA architecture that combines a large
vision-language backbone with a lightweight action expert for robot state and action generation. Pre-trained on both

self-recorded and open-source manipulation datasets, π0 generalizes across multiple robot embodiments and task types.

fined as systems that generate executable actions conditioned on visual and linguistic inputs, grounded
by at least one large-scale vision or language foundation model.

However, training a VLA model is non-trivial. For example, in [7], the authors collected 10,000 hours
of dexterous manipulation data from 7 different robot configurations and 68 tasks, in addition to large
amounts of previously collected robot manipulation data from OXE [42], DROID [43], and Bridge [44].
This shows that the performance of VLA models depends highly on high-quality task-related demon-
strations.

2.4. World Model
Following NVIDIA’s definition, world models are ”generative AI models that understand the dynamics
of the real world, including physics and spatial properties” [45]. In essence, world models summarize
an agent’s past experiences into a compact predictive model[10]. By encapsulating the environment’s
dynamics, they allow agents to simulate interactions, plan future actions, and make informed decisions
without requiring direct execution in the real world.

Recent advances in world model have focused primarily on image/video-based world models [10, 11,
12, 13, 14], which leverage the inherent world knowledge of video diffusion models [15, 16] to under-
stand the temporal and spatial relationships of the generated world. However, while these models can
generate visual compelling results, they inherently lack 3D consistency, due to the 2D training data and
underlying 2D representation.

Figure 2.7: Training and inference of a video-based world model [13]. It is a video diffusion model trained to predict the next
(variable length) set of observation frames (ot) given observations from the past (e.g., ot1) and action input at1.

However, these world models typically require large-scale data and significant computational resources
for training . Moreover, their inference speed is often insufficient for real-time applications, thus not well
suited for evaluating different action candidates. Currently, they are mostly integrated into end-to-end
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learning frameworks to guide action generation, such as Wu et al. [12] employed the Dreamer world
model [11] for online learning in four real-world robotic tasks—without relying on any external simulators.

Another line of research focuses on using point cloud completion and 3D AIGC (AI-generated con-
tent) techniques to construct explicit world models for the object of interest only. This strategy not
only enables interactive planning and long-horizon decision-making but also significantly reduces the
computational overhead involved in model construction (only multi-view images instead of videos).

For example, Mohammadi et al.[46] build object-centric explicit world models from point clouds to en-
able interactive grasp prediction. Similarly, Hidalgo-Carvajal et al.[47] adopt a comparable approach
using signed distance fields (SDFs) for dexterous manipulation. Magistri et al.[48] employ a DeepSDF-
based framework[49] to reconstruct complete 3D shapes of fruits from partial observations, which are
then combined with pose estimation to determine suitable grasp or harvesting poses.

More recently, Jiang et al. [18] construct explicit world models for articulated objects and apply sampling-
based model predictive control within a physics simulator to plan trajectories for various tasks—without
requiring demonstrations or reinforcement learning.

Figure 2.8: Overview of the DexSim2Real2[18] framework. The framework consists of three phases. (1) Given a partial point
cloud of an unseen articulated object, in the Interactive Perception phase, they train an affordance prediction module and use it

to change the object’s joint state through a one-step interaction. Training data can be acquired through self-supervised
interaction in simulation or from egocentric human demonstration videos. (2) In the Explicit Physics Model Construction phase,

they build a mental model in a physics simulator from the K + 1 frames of observations. (3) In the Sampling-based Model
Predictive Control phase, they use the model to plan a long-horizon trajectory in simulation and then execute the trajectory on

the real robot to complete the task. For dexterous hands, an eigengrasp module is needed for dimensionality reduction.

However, these prior works focus exclusively on single-object modeling and thus lack the capacity to
handle interactions among multiple objects. In this thesis, we propose a framework that constructs
explicit world models for multiple objects and performs interactive planning for diverse tasks within a
physical simulation environment for mobile manipulation.

2.5. Motion Planning for Manipulation
Obstacle-free motion planning for manipulators has been widely studied. Classical approaches rely on
geometric and kinematic models to plan collision-free trajectories in the configuration space, such as
RRT-connect [50] and probabilistic roadmap (PRM) [51].

While global methods (e.g., sampling-based or trajectory optimization) such as [50, 52, 53, 54], are
powerful, their long computation times make them unsuitable for dynamic environments with high-DOF
robots. Local planners, though with slightly lower success rates [55], enable real-time updates and
adaptability, and can be categorized into geometric [56, 57], sampling-based [58, 59], and optimization-
based [60, 61, 62] approaches.
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Geometric methods (e.g., dynamic fabrics) are used for reactive and local motion planning without the
need to solve an optimization problem. The reactive behavior of the system is described using second-
order differential equations. Different components or tasks, such as collision avoidance and joint limit
avoidance, are described using a second-order differential equation for each task and combined within
the configuration space. Due to the absence of an optimization problem and control horizon, the com-
putation time is fast (approx. 1 ms) which is beneficial for dynamic real-world environments. Geometric
fabrics are further extended to dynamic fabrics [57] accounting for the velocities of obstacles.

Nevertheless, the primary focus of this thesis lies in the perception pipeline of the explicit world model.
Therefore, we employ RRT-Connect as the motion planner for the manipulator, which provides an
efficient and reliable planning solution for our experiments.



3
Methods

3.1. System Overview
Our overall objective is to develop a pipeline that constructs an explicit world model enabling action
sampling, simulation, and evaluation for open-set object manipulation, conditioned on visual observa-
tions I and natural language task instructions C, as formulated in Equation 1.2. Since we leverage
the existing physical simulator Isaac Sim, which already embeds rich physical priors, our focus is on
constructing a digital twin that captures object-specific attributes—including geometry, material, and
pose—so that it can be seamlessly integrated into the simulation for physically grounded reasoning.

An overview of the full framework is illustrated in Figure 3.1. Given an RGB-D image of the scene and a
text instruction (e.g., “put the blue cup standing with its opening upside on the right wooden block”), the
system outputs a complete manipulation plan and executes it on a real-world manipulator. To achieve
our goal, the framework consists of four main components: Open-set Segmentation (Section 3.2),
Open-set Object Grasping (Section 3.3), Digital Twin Construction (Section 3.4), andManipulation
Strategy Sampling (Section 3.5).

To accomplish a task, the robot must first detect the relevant objects in the scene. Traditional detectors
are typically limited to a closed set of predefined classes and thus often fail in open-world scenarios.
To address this, our Open-set Segmentation module leverages a combination of the vision-language
foundationmodel GPT-4o [41] andGrounded-SAM [36] to detect and segment arbitrary objects involved
in the task. Next, in the Open-set Object Grasping module, we generate candidate grasp poses and
filter them using the segmentation masks obtained previously. After a successful grasp, the robot must
reason about how to manipulate the object to achieve the task goal, which motivates the use of a digital-
twin-based explicit world model. In the Digital Twin Construction module, we generate 3D models of
the observed objects, estimate their 6-DoF pose and scale to align them with real-world observations.
Besides, by predicting their materials, we also set their physical properties accordingly in the simulator.
Finally, in the Manipulation Strategy Sampling module, we sample multiple manipulation strategies,
simulate and evaluate their success probabilities. This allows us to evaluate candidate strategies within
the online-constructed explicit world model and select a successful one to execute on the real robot.

3.2. Open-set Segmentation
Open-set segmentation serves as the first step of our framework, aiming to identify the objects involved
in the task from an unconstrained scene without relying on a fixed object vocabulary. Given an RGB
image and a natural language task prompt, our system first determines which objects in the scene are
relevant to the task. For each task, the target objects are categorized into two groups: objects to grasp,
which are directly manipulated (e.g., grasped and placed), and other interactive objects, which provide
spatial or physical context but are not directly manipulated, such as containers, support surfaces, or
target locations.

In our Open-set Segmentation Module, we employ GPT-4o [41] and Grounded-SAM [36] to segment

10
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Figure 3.1: Overview of our manipulation task framework with explicit world model construction. The system takes an RGB-D
observation I and a natural language task instruction C as input and proceeds through four main stages: (A) Open-set

segmentation, (B) Open-set object grasping, (C) Digital twin reconstruction, (D) Manipulation strategy sampling. The outcome
is the most promising manipulation strategy, which is then executed on the real robot.

any objects related to the given task prompt. Specifically, we query the GPT-4o with the RGB image
and a prompt-aware question (e.g., “What objects in the picture are involved in the task ‘put the blue cup
standing with its opening upside on the right wooden block’? Return their names in two categories as
directly manipulated objects and other interactive objects.”), and themodel returns two lists of candidate
object names. This open-ended querying allows our method to generalize to arbitrary objects beyond
a closed set of predefined classes, thanks to the scalability of GPT-4o. Once the object names are
identified, we use Grounded-SAM to segment out the target objects from the input image, where the
textual object names returned by the GPT-4o are used as prompts to segment object masks from the
RGB image. This process results in accurate 2D segmentationmasks M̃obj for both directly manipulated
objects (e.g., cup) and other interactive objects involved in interaction (e.g., right wooden block).

M̃obj = fseg(Irgb, text). (3.1)

Despite the powerful text–image alignment capability of Grounding-DINO, the vision model still lacks
spatial reasoning ability. For example, when given a segmentation prompt such as “the wooden block
on the right side” for an image containing two wooden blocks, Grounding-DINO typically detects both
blocks with similar confidence scores. In contrast, such spatial reasoning is a basic competency for
large foundation models like GPT-4o.

To enhance the spatial reasoning ability of our perception module—which is essential for understanding
spatially related tasks—we introduce an additional mask filtering stage guided by GPT-4o. Specifically,
for all candidate masks returned by Grounded-SAM, we query the GPT-4o again to determine which
mask best aligns with the given segmentation prompt. With this large-foundation-model-based spatial
filtering, our segmentation module becomes capable of accurately identifying objects even when spatial
cues are involved.

These masks are subsequently used to guide downstream modules, including instance-level grasp
pose selection and digital twin construction.
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3.3. Open-set Object Grasping
3.3.1. Grasp pose predictor
We adopt AnyGrasp [63] as our grasp pose prediction module. AnyGrasp is a geometry-based method
trained on a large number of real-world grasping data that has demonstrated strong robustness in open-
set, general-purpose grasping tasks using a parallel gripper, making it well suited for our application.
The grasp pose predictor, denoted as fg(·), takes an input RGB-D image I and outputs a set of grasp
pose candidates g̃:

g̃ = fg(Irgbd). (3.2)

However, the predicted grasp candidates are densely distributed and correspond to all graspable ob-
jects in the scene. To reduce computational overhead, we first retain only the top 1000 predictions
ranked by confidence. For instance-level grasping, this subset must be further filtered to retain only
the candidates associated with the object of interest, as identified in the segmentation stage. This fil-
tering process is carried out by our grasp pose selection module, which is described in the following
subsection.

3.3.2. Grasp pose selector
The grasp pose selector is responsible for filtering the predicted grasp candidates to retain only those
associated with the object of interest. To achieve this, we reuse the masks M̃obj of the target objects
obtained from the open-set segmentation module.

Given the M̃obj of the target objects, we perform back-projection on the masked RGB-D image Iobj
to obtain the corresponding partial 3D point cloud Pobj. Each grasp candidate in g̃ is then evaluated
based on its spatial proximity to the surface of Pobj. Specifically, we retain only those grasp poses
whose contact points lie within a predefined distance threshold from the segmented object’s surface
points,

s(g) =

{
1, if d(g) ≤ τ (select)

0, if d(g) > τ (discard)
(3.3)

d(g) ≜ min
p∈Pobj

∥∥x(g)− p
∥∥
2

(3.4)

The result of our grasp pose predictor and grasp pose selector is illustrated in Fig 3.2.

Figure 3.2: Left: all predicted grasp pose candidates generated by AnyGrasp. Right: grasp pose candidates corresponding to
the banana, obtained after filtering with our grasp pose selector.

3.3.3. Grasp result checker
Similar to the large-foundation-based spatial filter in the previous module, to improve the robustness of
the grasping, we also add a grasp pose checker. After the execution of grasping, we inquire the GPT-
4o with the observation from the bottom camera if the gripper successfully grasped the target object,
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and if the answer is no (the grasping fails or someone deliberately takes the object off), the system will
keep trying to find the object and grasp it.

3.4. Digital twin Construction
Digital twin construction is one of the most critical components of our explicit world model framework.
Its accuracy—such as errors in scale, pose, or material—can significantly influence the outcomes of
physic-based simulation.

Therefore, the objective of this module is to construct accurate 3D meshes of the target objects, align
them with real-world poses from observations, and predict their material properties, enabling their reli-
able use in simulation-based interaction and planning.

3.4.1. Object mesh generation
A variety of methods can be employed to construct 3D meshes. For instance, neural rendering–based
approaches, such as NeRF[64] and 3D Gaussian Splatting[65], are capable of producing visually com-
pelling 3D representations. By subsequently applying voxelization and surface extraction techniques
(e.g., marching cubes), 3Dmeshes can be obtained from these implicit representations. However, such
methods generally require densely captured multi-view images to achieve geometrically accurate re-
constructions. When trained under sparse-view conditions, their performance deteriorates significantly,
often resulting in incomplete or distorted geometry. Moreover, the surface quality of the meshes ex-
tracted from these representations tends to be suboptimal, exhibiting artifacts or uneven topology.

In contrast, recent 3D generation methods can produce high-quality meshes from sparse views, or
even from a single image, making them particularly suitable for our objective of explicit world model
construction, where both geometric accuracy and generalization from limited observations are essential.
Previous works such as Xu et al.[66] and Pan et al.[67] employed DeepSDF [49] to generate complete
object shapes. However, DeepSDF relies on a category-level latent code to guide generation, which
must either be obtained during training or through online optimization—which is computationally expen-
sive. This reliance hinders open-set object interaction, which is central to our task.

To overcome these limitations, this project adopts Hunyuan 3D 2.0 [68] as the 3D generation module.
Hunyuan 3D 2.0 is capable of generating both shape and texture directly from a single RGB image.
By offering a favorable balance between inference speed, reconstruction quality, and generalization
across diverse object categories, it provides a practical and effective foundation for building explicit
world models in open-world robotic manipulation.

The quality of 3D generation is also highly dependent on the input image, which should ideally capture
the most distinctive features of the object. For instance, a top view of a mug often lacks informative
texture cues, making it difficult for the model to even recognize it as a mug; in such cases, a front view
is typically more informative. Conversely, for objects like a banana lying flat on the ground, the top view
generally provides a clearer representation than the front view. Based on this prior, our robot adopts a
exploratory observation strategy. It observes the objects from both front and top views, performs seg-
mentation and bounding box cropping, and selects the view that offers a more informative perspective
as input to the 3D generation module, as shown in Fig.3.3

3.4.2. Object mesh alignment
The mesh generated by the 3D generation module is in unit scale and canonical pose, meaning it
captures only the object’s geometry, but lacks global scale and pose information in the world coordi-
nate frame. Therefore, it is necessary to align the generated mesh with the real-world observation by
estimating the appropriate scale and 6-DoF pose.

However, this alignment is inherently challenging. Traditional point cloud registration methods—such
as RANSAC and ICP (Iterative Closest Point)—typically rely on the assumption that dense and reliable
point-to-point correspondences exist between the source and target point clouds. This assumption
does not hold in our case: the generated mesh provides a complete and idealized geometry of the
object, while the real-world observation captures only a partial and potentially noisy view, resulting in
ambiguous correspondences. For example, when only a portion of a mug is observed—excluding the
handle—it becomes difficult to determine the correct matching region on the complete mesh, as multiple
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Figure 3.3: High-angle and low-angle views of real-world observations. For certain objects such as the mug, the front view
provides more informative visual features and is therefore preferred for 3D mesh generation. In contrast, for objects like the
banana, the top view captures more discriminative geometry, making it a better choice. The generated meshes are on the top

right of each view and below are the corresponding robot poses.

locations may appear geometrically similar from that limited viewpoint. To address this, we incorporate
object texture into the alignment process. Our proposed 7-DoF pose alignment pipeline (3 translations,
3 rotations, and 1 uniform scale) performs mesh-to-observation matching in a coarse-to-fine, two-stage
manner, as shown in Fig 3.4.

Coarse alignment
Let P̃ denote the set of hypothesized coarse object poses sampled in 6D space (translation and rota-
tion). For each hypothesized pose p̃ ∈ P̃ , the corresponding textured 3D mesh is rendered to obtain
both the RGB image Ĩrgb and the depth image Ĩdepth. The following equation describes this rendering
process:

Ĩrgb, Ĩdepth = RenderP̃ (Mesh). (3.5)

Then, we compare the similarities of these rendered views with the real-world observation Iobs to select
the most promising hypothesis as an initial coarse pose estimate. Here we use DINOv2 [69](distillation
with no labels), a very powerful SOTA image feature extractor, to transform the images from pixel space
to feature space and compute the cosine similarities,

F̃render = DINO(Ĩrgb) (3.6)
Fobs = DINO(Iobs) (3.7)
S̃ = cosine(F̃render, Fobs), (3.8)

We then select the hypothesized pose with the highest similarity to the real-world observation as the
coarse pose estimate. Using this pose, we render a depth image of the generated mesh and back-
project it to obtain a partial point cloud that corresponds to the observed view. This transformation
effectively converts the challenging partial-to-complete alignment problem into a partial-to-partial align-
ment problem, thereby enabling the use of conventional point cloud registration methods, such as
RANSAC and ICP, for further fine alignment.
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Figure 3.4: The proposed digital twin construction module, containing the mesh generation and two-stage pose alignment. We
first generate a textured mesh from the masked RGB image via Hunyuan3D 2.0 [68]. During coarse alignment, we render RGB

and depth images from a set of hypothesis poses and compare their similarities with real-world observation in DINO [69]
feature space, and select the one that best matches the real-world observation. The resulting coarse pose is then refined using

RANSAC and ICP on the partial point cloud back-projected from the depth image.

It is worth noting that for the real-world observation of other interactive objects, we can directly reuse
the segmentation result obtained from the Open-set Segmentation module. However, for the grasped
object, we require its observation after the grasp is completed, since we need to know the transfor-
mation between it and the gripper in the next stage. This requirement introduces a new challenge:
segmentation performance on bottom-view images is often poor. We hypothesize that this is due to
the unfamiliar view angle and the presence of the gripper, which are rarely seen by the pretrained de-
tector. However, since the gripper pose is relatively fixed to the bottom camera after grasping, we can
reliably segment the grasped object using Segment Anything (SAM) [37], by providing bounding boxes
and point prompts as inputs, as illustrated in Fig. 3.5.

Fine alignment
The coarse alignment produces two roughly aligned point clouds that still differ in scale. To estimate
the scale factor, we compare the dimensions of the 3D bounding boxes derived from the partial point
clouds of both the rendered mesh and the real observation, and adjust the mesh dimensions to match
the real-world object. Following this, we refine the transformation using a combination of RANSAC and
ICP, yielding an accurate alignment between the generated mesh and the real object. We examined
our mesh alignment pipeline and the results are in Sec. 4.3

3.4.3. Material property prediction
Inspired by Xu et al. [70], who leveraged a large language model (LLM) together with a curated mate-
rial library to infer the material and physical properties of an object from its masked image, we adopt
a similar idea by utilizing the reasoning capability of GPT-4o to predict the material of the object. The
predicted material can then be used to assign corresponding physical properties in the simulation en-
vironment.

3.5. Manipulation Strategy Sampling in Simulation
Once the digital twin of the environment is constructed, we integrate it into a physics-enabled simulation
environment to perform manipulation strategy sampling. In this work, we adopt NVIDIA Isaac Sim
as the simulation platform. We then sample 6-DoF poses (three translations and three rotations) for
the dynamic object, representing candidate manipulation goals. Each candidate pose is instantiated
in the simulated scene, and the resulting physical interaction is simulated using the physics engine.
The outcome of each simulation is then evaluated to determine whether the manipulation strategy
successfully completes the task. This process allows us to test diverse candidate strategies without
executing them on the real robot.
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Figure 3.5: The segmentation result on the bottom-view image, with points and the box prompts annotated. The two green
points indicate the foreground area.

3.5.1. Interaction area segmentation
To improve sampling efficiency and reduce the size of the search space, the translation component of
the dynamic object’s pose is constrained to be near the most probable interaction region, as illustrated
in Fig. 3.6. Specifically, we use the masked image of the non-directly manipulated object to query GPT-
4o about which part of the object the dynamic one is expected to interact with. The identified region
is then segmented using Grounded-SAM, which provides a precise mask of the interaction area. The
segmented region is back-projected into 3D space to obtain a point cloud, from which we compute the
centroid as reference for the initial estimate of the translation component.

3.5.2. Interaction strategy sampling
After constraining the translation around the interaction area, we need to sample different rotation
angles to generate diverse 6-DoF pose hypotheses. For each sample, we spawn the non-directly
manipulated object at its real-world pose and the grasped object at the sampled pose. Accordingly, we
also need to spawn the Kinova arm with proper joint values, since there is a constant offset between
the gripper’s tool frame and the center of the grasped object. Specifically, for each grasped object, we
have an offset vector tto,

ptoolframe = pobj + tto (3.9)

where ptoolframe is the gripper tool frame position and pobj is the object position. We also spawn the
gripper in open state, because otherwise it will be in collision with grasped object at spawning, leading
to abnormal collision behavior.

Since there’s a connection between the grasped object pose and the robot arm end effector pose, we
need to further constrain the sample space according to the robot arm’s workspace. To characterize
the workspace constraints of the robot arm, we compute a reachability map using MoveIt!. Specifically,
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Figure 3.6: Our manipulation strategy sampling module. (a) Interaction area segmentation: We use GPT-4o and
Grounded-SAM to segment the interaction area on the not directly manipulated interactive object to constrain the sample space
of translation. (b) Interaction strategy sampling: Different rotations of the dynamic object are sampled and the interactions are
simulated in the Isaac Sim. (c) Result checking: The results are rendered in the simulator. We query the GPT-4o again to
check which samples fulfil the task requirements, and feed the results to a Gaussian Process classifier to get the success

probabilities. The candidate with the highest success probability will be executed on the real robot.

8,000 samples are generated by randomly assigning joint values to the arm. For each sample, the
corresponding end-effector pose is recorded and assigned to its nearest voxel and rotation bin. Given
that our task requires fine-grained manipulation, the voxel size is set to 1 cm, and the orientation space
is discretized into 720 rotation bins, uniformly sampled on the sphere. Although uniform sampling in the
3D Euler angle space would be simpler, it leads to severe non-uniformity; therefore, spherical sampling
is adopted instead.

The resulting reachability map is stored as a static library. For any queried end-effector position, we first
determine the voxel it belongs to and check whether this voxel exists in the reachability map. If it does,
we directly retrieve its associated rotation samples from the library. Otherwise, we search for its nearest
neighboring voxel within a predefined range. To further improve coverage and exploration, we apply
farthest point sampling to the retrieved rotation candidates and introduce small angular perturbations
to diversify the sampled orientations.

For each sampled reachable end-effector pose, we compute the corresponding joint configuration using
theMoveIt! inverse kinematics (IK) solver. Since the RRTConnect planner produces randomly sampled
suboptimal trajectories, we execute the planner ten times for each end-effector pose and select the
trajectory with the smallest joint-space distance. After obtaining all joint configurations, we spawn the
robot arm at these joint positions in the simulator, as illustrated in Fig. 3.6b (right).

3.5.3. Result checking and action selection
As formulated in Equation 1.2, we still require a score function R(C, τ) to evaluate the success of a
candidate trajectory τ = (s, o), where s and o denote the future states and observations generated by
the world model W , respectively. Since the internal states s are not directly needed for evaluating task
outcomes in our formulation, the function can be simplified to depend only on the visual observations,
i.e., R(C, o). Specifically, we use a combination of a large-foundation-model-based visual-language
identifier with a Gaussian Process (GP)–based success probability estimator to approximate the score
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Figure 3.7: RViz visualization of the computed reachability map. The color encodes the sampling density: blue indicates
regions with fewer reachable samples, while red highlights regions with higher sampling density.

function. The former assesses semantic task completion by comparing rendered observations under
the given instruction C, while the latter provides a probabilistic estimate given the binary success/failure
label from the former.

For each simulated strategy sample, we render an RGB image as the observation for each candidate
from a fixed, front-facing viewpoint with a−60◦ tilt, shown in Fig 3.6 b on the left. We then query GPT-4o
with the rendered image and the natural language task instruction to determine whether the observed
outcome satisfies the instruction. This yields weak binary labels yi ∈ {0, 1} for each end-effector pose
(ti,qi), where ti ∈ R3 is translation and qi = [w x y z]⊤ is a unit quaternion. The strategies deemed
successful by the GPT-4o are prioritized for real-robot execution.

To obtain calibrated success probabilities, we train a Gaussian Process (GP) classifier over SE(3). We
map each pose to a 6D Euclidean feature by combining translation and rotation with explicit scaling:

ϕ(t,q) =
[
(αt/ℓt) t

⊤, (1/ℓr) r(q)
⊤]⊤ ∈ R6, (3.10)

where r(q) ∈ R3 is the axis–angle rotation vector obtained from the unit quaternion with antipodal
identification (we enforce w ≥ 0 so that q and −q map to the same rotation). The hyperparameters ℓt
and ℓr control the sensitivity to translation and rotation, and αt ∈ (0, 1] further down-weights translation
relative to rotation (The rotation is more important in sampling, as we already have a prior knowledge
for translation via interaction area segmentation). In practice, we set ℓt=1.0m, ℓr=10◦ (in radians), and
αt=0.2.

On this feature space we use an RBF kernel with a learnable length scale,

k(ϕ,ϕ) = σ2 exp
(
− 1

2ℓ2 ∥ϕ− ϕ∥22
)
, (3.11)

and fit a Gaussian Process classifier (Laplace approximation) on the LLM-provided labels {(ti,qi), yi}.
We perform a small grid search with stratified K-fold cross-validation to choose a good initial ℓ for the
optimizer. At test time, the GP outputs calibrated success probabilities,

pi = Pr
(
y=1

∣∣ ti,qi

)
, (3.12)
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Algorithm 1: Reachability Map Construction and Query
Input: Robot arm model, voxel size v = 1cm, number of rotation bins Nr = 720
Output: Static reachability map R

Construction phase:
for i← 1 to 8000 do

Randomly sample joint values qi;
Compute end-effector pose Ti from qi;
Assign position of Ti to nearest voxel Vj ;
Assign orientation of Ti to nearest rotation bin Rk;
Store (Vj , Rk) in R;

Query phase:
Use object target position to approximate end-effector position p;
Find voxel Vp containing p;
if Vp ∈ R then

Retrieve associated rotation samples R(Vp);
else

Search nearest neighboring voxel Vnn in range;
Retrieve rotation samples R(Vnn);

Apply farthest point sampling to R(·);
Add small angular perturbations to enhance coverage;
return feasible set of rotation candidates;

We use the predicted probabilities to rank all candidate strategies and select the one with the highest
likelihood of success for real-robot execution. However, we do not directly optimize the trained Gaus-
sian Process model to search for the pose (ti,qi) with the maximum predicted probability, as this does
not guarantee physical feasibility or reachability within the robot’s workspace.



4
Experiments

This chapter details the experiments we designed to validate and benchmark the proposed solution.
The experiments validate the performance of several main components in our system: the accuracy of
digital twin reconstruction, the success rate of the strategy sampling in both simulation and real robot
execution.

4.1. Hardware Setup
The robot setup is shown in Fig 4.1. We used the 7-DoF Kinova Gen3 Lite robotic arm 1. Two Intel
RealSense D405 stereo cameras 2 were mounted on the gripper and the front bottom on the mobile
base with 3D printed camera supports respectively, serving as the primary and auxiliary perception
sensors. The bottom camera also has a 25 degree elevation angle to better observe the grasped
object. For computational resources, we have a NVIDIA RTX 2070 GPU with 6GB RAM on a laptop
and a NVIDIA RTX 3090 GPU workstation with 24GB RAM.

Figure 4.1: The sensor setup of our system. We mounted two RealSense D405 stereo cameras on the gripper (top left) and
the front bottom on the mobile base (top right). For the gripper camera, we use Vicon system to get its pose in world frame, and

for the bottom camera, we use calibration board to get the fix transformation between the mobile base and itself.

To obtain accurate pose information of both the Kinova base link and the gripper-mounted camera, we
1https://www.kinovarobotics.com/product/gen3-lite-robots
2https://realsenseai.com/stereo-depth-cameras/stereo-depth-camera-d405/

20
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employed a Vicon motion capture system for external tracking. The transformation between the bottom
camera and the robot was acquired from calibration.

4.2. Software Setup
The software architecture of the system is illustrated in Fig. 4.2. To handle computationally demanding
tasks, GPU-intensive functional modules—including AnyGrasp, Grounded-SAM, and Hunyuan 3D—
are deployed on a remote server equipped with an NVIDIA RTX 3090 GPU. The main control laptop
connects to the remote server via SSH, transmitting data and retrieving results through a Flask-based
communication service. Within the local network, the user can issue text prompts to the main con-
trol laptop to initiate task execution, while the robot communicates with the laptop through the ROS
framework for data exchange and control. The strategy sampling is also performed on the main control
laptop, with Isaac Sim 4.5.0 + Isaac Lab 2.2.1.

Figure 4.2: The software setup of our system. Within the local network, the user provides commands to the main control
laptop, which communicates with the robot via ROS to fetch sensor data and send control signals. The laptop also interfaces
with remote servers running AnyGrasp, Grounded-SAM, and Hunyuan3D for grasp detection, segmentation, and 3D shape

generation. The Isaac Sim simulation sampling is also run on the main control laptop.

4.3. Digital Twin Construction Accuracy
The objective of our digital twin reconstruction module is to obtain an aligned mesh of the target object
that accurately restores its geometry and global pose. To the best of our knowledge, our approach is
novel in its open-set property—it requires no category-specific prior knowledge, taking only a single
RGB-D image as input.

In this experiment, we compare our proposed two-stagemesh alignment pipeline with a direct alignment
baseline, which applies RANSAC and ICP directly to the generated mesh. Ideally, pose error would
serve as a more informative metric for evaluating alignment performance; however, ground-truth object
poses are unavailable in our real-world setup, and coordinate frames are not consistently fixed for each
generated mesh. Therefore, we evaluate alignment performance using two complementary metrics:
alignment success rate, which measures the correctness of the estimated object pose, and root mean
square error (RMSE), which assesses the geometric precision of the alignment.

We conduct experiments across multiple object categories, both being placed freely and under grasping
scenarios. Since ground-truth meshes are also unavailable, we use Hunyuan 3D to generate meshes
for all samples. Both the proposed and baseline alignment pipelines use the same generated meshes
for a fair comparison. The quantitative results are summarized in Table 4.1.

The results demonstrate that our proposed two-stage mesh alignment method substantially improves
the alignment success rate compared with direct alignment using RANSAC and ICP. The direct align-
ment baseline relies solely on minimizing point-to-point distances without a reliable initialization, which
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Figure 4.3: Qualitative results of the proposed two-stage mesh alignment method. The left image shows the generated
meshes of the blue cup and wooden block aligned and overlaid with the RGB-D observation. The right image illustrates the

corresponding real-world setup.

objects valid sample our method direct alignment
success
rate ↑

RMSE ↓ success
rate

RMSE

without grasp in the gripper
mug 11 90.91% 0.00457 27.27% 0.00390
box 5 100.00% 0.00564 100.00% 0.00684
foam box container 5 40.00% 0.00665 20.00% 0.00745
bottle 8 100.00% 0.00432 62.50% 0.00367
laptop 11 90.91% 0.00408 45.45% 0.00453
grasped in the gripper
mug 9 88.89% 0.00443 11.11% 0.00450
banana 8 100.00% 0.00505 100.00% 0.00460
fish 4 100.00% 0.00400 100.00% 0.00317
cup 3 66.67% 0.00412 33.33% 0.00474

Table 4.1: Comparison of mesh alignment performance between our two-stage alignment pipeline and direct alignment under
different conditions (with and without grasped objects). The table reports the alignment success rate and root mean square

error (RMSE) for each object category.

often leads to convergence to local minima or incorrect correspondences—particularly in cases where
the partial point cloud differs significantly from the complete mesh. In contrast, our method leverages an
initial coarse alignment stage guided by appearance similarity, effectively narrowing the search space
for fine alignment and improving robustness to noise and scale differences.

Although in a few cases the direct alignment yields slightly lower RMSE values, these typically cor-
respond to the limited instances where it converges correctly. Overall, our method achieves a much
higher alignment success rate while maintaining comparable geometric accuracy, validating the effec-
tiveness of the two-stage pipeline for robust and generalizable mesh-to-scene alignment.

4.4. Real Robot Task Performance
4.4.1. Experiment setup
We performed three real robot experiments for a total 72 attempts on our system, with 24 attempts for
each. The selected tasks are designed to validate the system’s ability to understand both semantic
instructions and spatial relations, and also the ability to complete various open-world tasks without
seeing the objects before or fine-tuning on these tasks. Relying on these properties, our system shows
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the potential to tackle the open-world object manipulation problem in a novel way. The tasks and their
corresponding text prompts are illustrated in Fig 4.4. Fig 4.5 shows all the objects we used in the
experiments.

Figure 4.4: Three designed tasks for the validation of our explicit world model system.

Figure 4.5: The relative scales of the objects used in our manipulation tasks.

The system parameters used in all experiments are summarized in Table 4.2. For each trial, the number
of strategy samples simulated in Isaac Sim is fixed to nine. This number controls the trade-off between
computational efficiency and robustness: a smaller number accelerates the overall simulation but in-
creases the risk of not obtaining any successful sample, whereas a larger number improves the chance
of finding feasible strategies at the cost of longer simulation time The dropping margin refers to the dis-
tance along the z-axis between the centroid of the interaction area and the sampled dropping position.
A larger margin helps prevent collisions between the grasped object and nearby objects, whereas a
smaller margin can be advantageous in tasks where object bouncing is undesirable. Additionally, the
RRT-Connect planner is configured with two key parameters: position tolerance and orientation tol-
erance. Smaller tolerances result in more precise trajectory execution but increase the likelihood of
planning failure.
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Parameter Value Description
Number of samples 9 number of samples used in simulation

Dropping margin 0.6 * maximum
dimension of the
grasped object

the z-axis distance between the cen-
troid of the interaction area and the
sample position

RRTConnect planner
position tolerance

0.03m the maximum error of the tool frame po-
sition allowed in the planning

RRTConnect planner
orientation tolerance

0.08rad the maximum error of the tool frame ori-
entation allowed in the planning

Table 4.2: System parameters used in the experiment.

4.4.2. Quantitative results
The respective success rate of three tasks are listed in Table 4.3. From the statistics, we can see that
”Put the banana into the basket” is the ”easiest” task, as it has a relatively high success rate, while the
other two tasks share similar low success rates.

Task Success Rate
Put the banana into the basket 62.5%
Stack the green cube onto the yellow cube 16.7%
Put the blue cup upside down on the wooden box 12.5%

Table 4.3: Task success rate of different manipulation scenarios.

Overall results
To provide a comprehensive evaluation of the entire system, we record the success/failure results of
all major components, including object grasping, mesh generation, mesh alignment, interaction area
segmentation, strategy sampling in simulation, sampling result checking, and real robot execution. The
results are visualized as a Sankey diagram as shown in Fig 4.6. The definitions of each failure type
are detailed in Table 4.4.

Figure 4.6: Sankey diagram illustrating the stage-wise success and failure flow across all 72 real-world trials. Each block
represents one functional module in the proposed framework, while the link thickness corresponds to the number of trials that
succeeded or failed at that stage. The results show that most failures occur during mesh alignment and real-robot execution,

indicating that perception accuracy and physical execution robustness are the major bottlenecks of the current system.

Figure 4.6 illustrates the stage-wise success and failure flow across all 72 real-world trials. The early
stages of the framework, including grasping, mesh generation, and mesh alignment, achieve relatively
high success rates (the third task contributes 8 out of 10 mesh alignment failure cases), indicating that
the perception and digital twin reconstruction modules are stable and robust under various conditions.
In contrast, the final stage — real robot execution — shows a noticeably lower success rate, with only
21 successful completions out of 42 valid strategies verified by the checker.
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Failure Type Definition
Grasping Failure The robot failed to grasp the object within three attempts. Since a

grasp result checker is included, the robot will theoretically keep
retrying until a successful grasp is detected.

Mesh Generation
Failure

The generated mesh exhibits incorrect geometry or major struc-
tural differences compared with the real object.

Mesh Alignment Fail-
ure

The estimated mesh pose significantly deviates from the true
pose of the real object. Minor deviations within the acceptable
tolerance range are not considered as failures.

Interaction Area Seg-
mentation Failure

The segmented interaction region is clearly incorrect, e.g., in the
task ”put the banana into the red basket”, the segmented area
corresponds to the basket’s side instead of its opening.

Simulation Strategy
Sampling Failure

No successful strategy sample was found in the simulation among
the generated candidates.

Sampling Result
Checker Failure

Although at least one successful candidate exists, the checker
module fails to return the correct successful index.

Real Robot Execu-
tion Failure

Given a successful simulation strategy, the real robot fails to phys-
ically execute and complete the task.

Table 4.4: Definitions of the different failure types for different stages in the proposed framework.

The substantial drop in success rate in the final execution stage highlights the sim-to-real gap between
simulation and the physical world: although our framework found the successful action candidates, the
real robot execution might have a different result. Several factors contribute to this discrepancy. First,
the physics engine of Isaac Sim, though highly realistic, cannot perfectly replicate real-world contact
dynamics such as friction, compliance, and collision restitution, leading to discrepancies in manipulation
outcomes. In an attempt to mitigate this gap, we incorporated material property estimation to better
parameterize physical attributes (e.g., friction and restitution coefficients) in Isaac Sim. However, the
range of adjustable parameters remains limited, and the simulated behaviors still deviate from real-
world dynamics. In particular, hollow or deformable structures, such as plastic cubes, cannot yet be
accurately modeled or detected based solely on visual appearance, leading to further inconsistencies
between simulated and real interactions. Second, the robot hardware precision and control latency
introduce minor pose and timing errors that can accumulate during execution, especially for tasks with
tight spatial constraints. Third, sensor noise and calibration errors (e.g., camera extrinsics and depth
inaccuracies) can cause small misalignments between the reconstructed scene and the actual setup,
which are tolerable in simulation but critical for real-world success.

Task-specific results
In addition to the overall framework statistics presented in Fig.4.6, we conducted a task-level robustness
analysis to examine how different types of failures are distributed across various object manipulation
tasks. The corresponding failure distributions are illustrated in Fig.4.7.

To better interpret the experimental statistics, we first analyze the properties of each task and the
characteristics of the involved objects. For the first task, “put the banana into the red basket”, both
the banana and the basket are relatively large in scale, which makes the task outcome more robust to
minor position errors. The task also exhibits a higher tolerance to orientation inaccuracies. Moreover,
since the basket is soft, it provides additional robustness to small deviations in the dropping margin —
the basket is less likely to be displaced even if the object makes slight contact with it. All these factors
contribute to the overall high success rate of this task. However, despite the high completion rate, this
task also shows the highest number of grasping failures. The banana is a thin and rigid object, making
it sensitive to vertical positioning errors of the tool center point (TCP). A slightly higher TCP causes the
gripper to collide with the ground, while a lower TCP often leads to missing the object entirely.

For the second task, “stack the green cube on the yellow cube”, both position and orientation tolerances
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Figure 4.7: Failure type distribution across the three object manipulation tasks. Each cell represents the number of
occurrences of a specific failure type for a given task. The color intensity reflects the relative failure frequency, showing that the

stacking cubes task fails most frequently during the real-robot execution stage, while the cup upside on box task suffers
primarily from mesh alignment errors.

are much tighter than in the previous task. The cubes are made of soft rubber and are hollow inside,
which makes the interaction highly sensitive to the dropping margin. Even with accurate positioning
and orientation, the top cube can easily bounce off if the dropping margin is too large, while an overly
small margin may cause the bottom cube to be pushed away. Although we can adjust the restitution
coefficient in Isaac Sim to emulate elasticity, the real-world object’s internal structure (e.g., whether it
is hollow) cannot be inferred solely from its appearance, leading to inconsistencies between simulation
and reality. Furthermore, the mesh generation module frequently failed in this task. The 3D generation
model occasionally produced a rectangular cuboid instead of a cube, resulting in poor geometric align-
ment. Additionally, the result checking module sometimes misclassified scenarios where two cubes
were merely placed adjacent to each other as successful stacking cases, which also contributed to the
lower reported success rate.

For the third task, “put the blue cup standing with its opening upside on the right wooden block”, mesh
alignment turned out to be the dominant source of failure. TheDINOv2model often struggled to produce
correct view-matching results during the rendering comparison stage, sometimes yielding completely
reversed or perpendicular alignments with respect to the real-world observation. This issue is likely
caused by the limited texture cues on the cup surface—beingmostly uniform and glossy—whichmake
the model highly sensitive to illumination differences between the real-world image and the rendering
setup. Moreover, the task itself imposes strict orientation requirements, as the cup must stand perfectly
upside down with minimal angular deviation. Combined with the limited reachable orientations of the
robot arm at that specific position, the simulation-based strategy sampling sometimes failed to generate
any feasible candidates that satisfy the grasp and placement constraints. As a result, even though the
perception pipeline occasionally provided plausible digital twin model, the downstream sampling and
execution stages were frequently unsuccessful.

To evaluate the effectiveness of the LLM-based sample result checker, we also computed its precision,
recall, and F1-score on the three representative manipulation tasks, as summarized in Table 4.5. The
checker determines whether the rendered outcome of a simulated strategy satisfies the given task
prompt, effectively functioning as a semantic verifier between simulation and language-based intent.

The results indicate that the checker performs extremely well on the “put the banana into the basket”
task, achieving an F1-score of 0.984. This is mainly because the visual cues of this task are clear and
the task goal is unambiguous, allowing the LLM to easily identify success or failure from the rendered
image. In contrast, the stacking cubes and cup-on-box tasks are more challenging. The stacking task
often involves visually ambiguous cases, such as two cubes being close but not stably stacked or placed
closely side by side rather than one on top of the other, leading to false positives and reduced precision.
For the cup-on-box task, the main challenge lies in distinguishing the cup’s orientation. Although the
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prompt explicitly specifies “with its opening upside”, the LLM sometimes fails to differentiate between
the cup’s opening and bottom, particularly under varying lighting or shading conditions in the rendered
images. This leads to occasional false positives where a correctly placed but non-inverted cup is
misinterpreted as successful.

Overall, the LLM-based checker does demonstrate strong generalization and semantic understanding
across different object configurations. However, its sensitivity to visual ambiguity suggests that incor-
porating spatial reasoning or multimodal feedback (e.g., depth or contact information) could further
improve its robustness.

Task Precision Recall F1-score
Put the banana into the basket 0.993 0.977 0.984
Stack the green cube onto the yellow cube 0.644 0.829 0.699
Put the blue cup standing upside on the wooden box 0.590 0.615 0.600

Table 4.5: The precision, recall, and F1-score of the simulation result checking via LLM for three tasks.



5
Conclusion and Future Works

5.1. Conclusion
This thesis presented a novel framework that constructs an explicit world model to enable action sam-
pling, simulation, and evaluation for open-world object manipulation tasks, conditioned on visual obser-
vations I and natural language task instructions C. Unlike end-to-end Vision-Language-Action (VLA)
or imitation learning methods that require large amounts of task-specific action data, our approach
leverages a physically grounded digital twin and simulator to reason about object dynamics and predict
successful actions without any demonstrations.

The proposed system integrates open-set segmentation and grasping, 3D digital twin reconstruction,
and simulation-based strategy sampling and evaluation within a unified pipeline. Experimental results
demonstrate that the proposed two-stage mesh alignment pipeline is able to support the accuracy
and robustness of digital twin reconstruction, providing more reliable object pose estimation. With the
constructed explicit world model, the system is capable of performing dynamic reasoning and strategy
evaluation across diverse manipulation tasks, and achieves successful transfer from simulation to real-
world execution, proven by real robot experiments.

Furthermore, the detailed failure analysis highlights the contribution of each subsystem, including the
effectiveness of the mesh alignment stage and the reliability of the LLM-based result checker in eval-
uating task outcomes. Overall, this research contributes toward bridging the gap between high-level
semantic reasoning and physically grounded manipulation in open-world scenarios.

5.2. Limitation and Future Works
While the proposed framework demonstrates promising results, several limitations remain to be ad-
dressed in future research.

• Simulation-to-real gap: The most significant limitation arises from the discrepancy between sim-
ulated and real-world physics. Despite incorporating material estimation to improve realism, Isaac
Sim’s physical model still cannot fully capture complex object dynamics, such as compliance,
surface friction, or hollow structures. Future work could integrate data-driven physical property
estimation or real-to-sim calibration to reduce this gap.

• Limited object types and dynamics: This thesis focuses on rigid objects. Extending the frame-
work to handle deformable, articulated, or fluid-like objects would significantly broaden its appli-
cability in real-world tasks.

• Integration of grasping and placing: In this thesis, object grasping and placing are treated
as two separate modules, which may lead to inconsistencies, as the optimal placing strategy
often depends on the specific grasping outcome. Future work could address this limitation by
integrating both stages into a unified framework that jointly considers grasp–place dependencies.

• Temporal reasoning and task decomposition: The current system evaluates single-step ma-

28
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nipulation strategies. Incorporating temporal planning or hierarchical reasoning would enable the
execution of multi-stage tasks involving sequential or conditional actions.

• Efficiency and scalability: The simulation-based strategy sampling process is not very efficient
when scaling to more samples and complex scenes. Future work could explore learning-based
surrogate models or differentiable simulators to accelerate evaluation.

In summary, this thesis contributes an important step toward building physically grounded world mod-
els for open-world robotic manipulation. Future work will focus on improving physical fidelity, extending
the framework to complex object types and multi-step reasoning, and developing more efficient, gen-
eralizable systems that can learn and act robustly in the real world.
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