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Model Predictive Control Approach for Multi-UAVs
Planning and Motion Control

X.Li, P.Yang,

Abstract—We implemented and simulated a Model predictive
control (MPC) approach for multi-UAVs control. A state-based
MPC approach for signal UAV position control was designed
and was used to explore the effect of parameters on the results.
Meanwhile, we designed a path-planning method and an output
MPC method with trajectory tracking and collision avoidance for
multiple UAVs in complex environments. A stability analysis is
also performed to prove the stability of the approach. See Github
for project details:

https://github.com/PatrickYang-5/MPC drones.

I. INTRODUCTION

Cooperative control of multi-UAVs is one of the popular
research directions[1][2][3], which has a wide range of appli-
cations in scenarios such as environmental protection, factory
inspection, and disaster rescue. A traditional solution is to
use global planning methods based on A*[4] and RRT*[5] to
obtain a control trajectory and apply a positional PID method
to control the UAV to realize the trajectory following. This
approach has been successful for simple tasks and a small
number of UAVs, but as the task complexity and cluster size
increase, due to ignoring optimality and dynamic constraints,
the above methods often lead to non-optimal control results
and erroneous collisions.

Inspired by the constraints and optimality of MPC[6], we
chose to use the MPC method instead of the traditional PID
method to achieve a more optimal control method. This project
will focus on the following four main tasks:

• Establishment of a MIMO linear discrete dynamics model
for quadrotors.

• Regular and output MPC designing.
• Asymptotic stability analysis of the system.
• Pybullet-based simulation system construction and simu-

lation results analysis.

II. MODEL ESTABLISHMENT

A. Dynamics of Quadrotor

The dynamics model of the quadrotor can be solved based
on the Lagrangian dynamics approach[7]. It is worth noticing
that the state of the quadrotor can be divided into position and
attitude variables. Therefore, in this subsection, we will give
the dynamics model separated into position and attitude.
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Fig. 1. UAV coordinate system and control variable definitions.

The dynamics model for position variables: ẍ
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 , (1)

where, ẍ, ÿ, z̈, and Fi are shown in Fig.1. g is the gravity
acceleration along the z-axis. Rϕ,θ,ψ is the rotational matrix
transformed from body to world coordinates. This rotational
matrix is calculated through an Euler angle in Z-Y-X order:

Rϕ,θ,ψ = Rz(ψ)Ry(θ)Rx(ϕ), (2)

where,

Rx(ϕ) =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 , (3)

Ry(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , (4)

Rz(ψ) =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

 . (5)

The dynamics model for attitude variables can be calculated
using the respective transformations of the rates of the Euler
angles:
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(6)
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Expanding the matrix, combining the Euler angles into a
vector, and moving it to the left, we can obtain the following
equation:

 ϕ̈

θ̈

ψ̈

 =

 cos θ cosψ − sinψ 0
cos θ sinψ cosψ 0
− sin θ 0 1

−1  ωx
ωy
ωz

 . (7)

According to the Euler equation, we can get the relation-
ship between Euler acceleration and rotational velocity and
individual thrusts Fi:

I·

 ϕ̈

θ̈

ψ̈

+
 ωx
ωy
ωz

×I·

 ωx
ωy
ωz

 =

 l(F2 − F4)
l(F3 − F1)

M1 −M2 +M3 −M4

 .
(8)

where I is the moment of inertia matrix. l is the arm length
of the drone and Mi is the ith motor’s moment.

B. Dynamics Linearization

The previously established dynamics model contains non-
linear terms, which poses challenges for constructing drones’
linear time-invariant (LTI) model. Since our designed UAVs
and the corresponding simulation environment are being used
in low-speed and small-tilt applications[8], we can make the
following assumptions:

• The roll and pith of the UAVs are close to zero.
• The UAVs have small angular velocity and the inertial

moment in the Euler equation can be neglected.
Based on the two assumptions, we can rewrite eq.7 and eq.8

as follows:

 ϕ̈

θ̈

ψ̈

 =

 cosψ − sinψ 0
sinψ cosψ 0
0 0 1

−1  ωx
ωy
ωz

 , (9)

I ·

 ϕ̈

θ̈

ψ̈

 =

 l(F2 − F4)
l(F3 − F1)

M1 −M2 +M3 −M4

 . (10)

C. LTI Model

The basic LTI model has the following general form:

ẋ = Ax+Bu

y = Cx
. (11)

In the scenario of UAVs, we choose the generalized posi-
tions and velocities for translation and rotation as the system’s
state, and the thrust of each motor as the system’s input. In
order to strictly follow the general form of the basic LTI
model, we introduce gravitational acceleration into the state
vector, even though it is a constant and not a state.

x =
[
x y z ẋ ẏ ż ϕ θ ψ ϕ̇ θ̇ ψ̇ g

]T
y =

[
x y z ẋ ẏ ż ϕ θ ψ ϕ̇ θ̇ ψ̇ g

]T
u =

[
F1 F2 F3 F4

]T . (12)

Since using the forces of four motors makes the B matrix
complicated, we modified the definition of the inputs to reduce
the complexity of the B array, and the modified inputs are as
follows:

u =
[
U1 U2 U3 U4

]T , (13)

where,
U1 = F1 + F2 + F3 + F4

U2 = l(F2 − F4)

U3 = l(F3 − F1)

U4 = l(T1 − T2 + T3 − T4)

Ti = KMFi/Kf i = 1, 2, 3, 4

. (14)

Based on the linearized dynamics model described in the
previous sections, we can calculate the A, B, C, and D matrix.
Due to the high dimensionality of the matrices, it is hard to
show here, please refer to the program for the calculation
results.

III. MODEL PREDICTIVE CONTROL DESIGN

According to the dynamic model of UAVs proposed in the
previous section, we designed three MPC control strategies for
different tasks:

• Regular MPC without global path planning for target
position control tasks.

• Output MPC combined with global path planning for
single UAV path-tracking tasks.

• Output MPC approach suitable for multi-UAVs path
tracking and obstacle avoidance.

A. General Form of MPC

The MPC controller is designed to minimize a stage cost
function ℓ(x, u) over a finite horizon N subject to the system
dynamics and constraints. The MPC problem is solved at each
time step k by solving the following optimization problem:

min
u

N−1∑
i=0

ℓ(x(k + i), u(k + i)) + Vf (x(k +N)) (15)

s.t. x(k + i+ 1) = f(x(k + i), u(k + i)), i = 0, . . . , N − 1

x(k + i) ∈ X, u(k + i) ∈ U, i = 0, . . . , N − 1

x(k +N) ∈ Xf

where x(k) is the state vector at time k, u(k) is the control
input at time k, f is the system dynamics, X and U are the
state and control input constraints, respectively, and Xf is the
terminal set.

B. Regular MPC Design

The goal of the regular MPC approach is to make the UAV
control hover at the target position while keeping the UAV
state and inputs optimal during operation. To realize this goal,
we designed the process and terminal costs as follows:

ℓ(x(k + i), u(k + i)) =

x(k + i)′TQx(k + i)′ + u(k + i)TRu(k + i)

Vf (x(k +N)) = x(N)′TPx(N)′
, (16)
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where x(·)′ = x(·) − xtarg and xtarg is the target position
with other states being zero so that it becomes the new origin
and the MPC controller will try to regularize the system to it.

The Q and R are repetitively tuned based on the simulation
results, and the corresponding values for which good results
can be achieved are as follows:

Q = diag(
[
150 150 150 8 8 8 8 8 8 8 8 8

]
)

R = diag(
[
10 10 10 10

]
)

(17)

In order to make the system optimal and controllable, P is
chosen to be the solution of the unconstrained LQR problem
with infinite horizon, and this solution is obtained in this
project by solving the discrete algebraic Riccati equation.

For the state constraints, based on the definitions in the
simulation environment and URDF model, as well as referring
to the performance of common UAVs in reality, we set the
linear speed limit of the UAV in the XYZ-axis in the interval
[−2, 2]m/s.

In order to be consistent with the small angle assump-
tions made in the previous linearization of the dynamics
model, we restrict the angle of RPY rotation to the interval
[−0.5, 0.5]rad. The corresponding angle is 28.5°, which meets
the simplification made in the linearization.

The rotational speed of the UAV has an upper limit, so
the inputs to the system should also be designed with corre-
sponding constraints. We refer to the acceleration parameter
of common UAVs and set the input limit to a force that makes
the UAV realize 0.5 times the acceleration of gravity and
cannot provide a reverse force. The effect of the input on
the acceleration of the RPY rotation is also limited to small
values (maximum 0.15).

The control input constraints are represented in compact
form as Hxx(k) ≤ hx and Huu(k) ≤ hu where Hx and Hu

are the 12x12 and 8x4 matrix:

Hx =


O3×3 I3 O3×3 O3×3

O3×3 −I3 O3×3 O3×3

O3×3 O3×3 I3 O3×3

O3×3 O3×3 −I3 O3×3

 (18)

Hu =



1/m 0 0 0
−1/m 0 0 0

0 1 0 0
0 −1 0 0
0 0 1 0
0 0 −1 0
0 0 0 1
0 0 0 −1


(19)

where ON×M is the zero matrix with N rows and M columns
and Ik is the k-dimensional unit array.
hx and hu are the vectors:

hx =
[
2 2 2 2 2 2 0.5 0.5 0.5 0.5 0.5 0.5

]T
hu =

[
1.5g − 0.5g 0.15 0.15 0.15 0.15 0.15 0.15

]T (20)

The terminal set used in this project is obtained by calcu-
lations, which will be presented in section[IV].

Since there is a distance between the starting position and
the target position of our design, we choose the prediction
horizon N to be 100 in order to ensure the terminal set is
reachable within the horizon. Such a challenge became one of
the motivations for us to design and implement the output
MPC. That is, by using global path planning to generate
trajectory positions such that the UAV only needs to reach
the nearby target point‘s terminal set within a short prediction
horizon, which can greatly reduce the required prediction
horizon.

Fig. 2. System schematic with global planner and MPC in the planning and
control section.

C. Output MPC for Single UAV
1) Global Planner: We designed UAV path planning al-

gorithms based on A* and RRT*, modified A* for multi-
UAVs applications, and used a zero-order keeper to obtain a
smoothed discrete path sequence. The path planning approach
is not the core of this project and therefore will not be
described in detail here.

2) Output MPC Designing: During the state feedback pro-
cess, not all states are observable due to the limitations of
the sensors carried by the UAV. To represent this phenomenon
in our simulation, we modify the observation model of the
dynamics model to make the following states observable:

• The XYZ-axis absolute position of the UAV.
i.e., only these three terms of the C array in the dynamics
equation are 1.

We take the position of the path point from the trajectory
as yref , in order to realize the output MPC, we need to solve
for the xref and uref corresponding to the yref .

These values can be obtained by solving the optimal target
selection (OTS) problem, which we use can be represented by
the following equation:

min
xref ,uref

N−1∑
i=0

ℓ(x(k + i), u(k + i)) (21)

s.t.
[
I −A −B
C 0

] [
xref
uref

]
=

[
0
yref

]
(xref , uref ) ∈ Z
Cxref ∈ Y
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After solving for xref and uref by solving for xref and
uref during each iteration, we modify the cost function in
mpc to the following function:

min
u

N−1∑
i=0

ℓ(x(k + i), u(k + i)) + Vf (x(k +N)) (22)

ℓ(x(k + i), u(k + i)) =

x(k + i)′TQx(k + i)′ + u(k + i)′TRu(k + i)′

Vf (x(k +N)) = x(N)′TPx(N)′

where x(·)′ = x(·)− xref and u(·)′ = u(·)− uref .
Since the robot model is the same as previously established,

in the output MPC for a single UAV, we use the same matrix
parameters as designed in the Regular MPC.

D. Output MPC for Multi-UAVs

Obstacle avoidance among multiple UAVs is an important
goal in the development of UAV cluster technology. The
avoidance between multiple UAVs can be realized by excellent
global planning, for example, using the modified A* algorithm
UAVs designed in this project can realize the path separation
in the global planning process. However, the modified global
planning has the problem of high time complexity and non-
optimal solutions.

Therefore, we will design special constraints for the MPC to
accomplish the obstacle avoidance task among multiple UAVs,
and thus obtain better control results with less time complexity.

Fig. 3. Constraints design approach, where (a) expresses that the constraints
between drones are planar linear constraints, (b) expresses the change in
constraints over the runtime, and (c) expresses the features of the soft
constraint design.

In this project, we first establish a strict planar linear
constraint for the UAVs. This constraint is shown in Fig.3(a)
and the planar constraints are updated in real-time according to
the position of obstacle UAVs according to the method shown
in Fig.3(b).

However, strict plane constraints can only deal with colli-
sions with bias, and in direct collision scenarios solution errors

will occur ( this will be described in detail in section V). To
solve this problem, we propose a soft-margin constraint MPC
method as shown in Fig.3(c), which allows UAVs to approach
each other to a degree but show a tendency to move away from
each other. It can be represented by the following optimization
problem:

min
u

N−1∑
i=0

ℓ(x(k + i), u(k + i)) + Vf (x(k +N)) (23)

ℓ(x(k + i), u(k + i)) =

x(k + i)′TQx(k + i)′ + u(k + i)′TRu(k + i)′

+ δ(k + i)TKδ(k + i)

Vf (x(k +N)) = x(N)′TPx(N)′

s.t. n · Pos(k + i) ≤ b− δ(k + i)

where n is the normal vector to the plane constraint, Pos(k+i)
is the first three terms of the state x(k+ i), i.e., the positional
quantities, δ(k+ i) is the violated distance, which participates
in the optimization process as an optimization variable.

Except for the new constraint design, all other parameters
follow the matrix parameters from the previous sections.

IV. ASYMPTOTIC STABILITY

A. General Assumptions

In this section, we show that the designed MPC asymp-
totically stabilized the closed-loop system. With this aim, we
verify the assumptions of Theorem 2.2, 2.3, 2.14 in the book
[9].

Assumption 2.2: (Continuity of system and cost). The
functions

f : Z → X, ℓ : Z → R⩾0, Vf : Xf → R⩾0

are continuous, f(0, 0) = 0, ℓ(0, 0) = 0 and Vf (0) = 0. (Note
that Z = X× U).

Assumption 2.3: (Properties of constraint sets). The set Z
is closed and the sets Xf ⊆ X is compact. Each set contains
the origin.

Assumption 2.14: (Basic stability assumption).
(1) For all x ∈ Xf , there exists a control law u = κ(x)

such that

f(x, κ(x)) ∈ Xf
Vf (f(x, κ(x))) ≤ Vf (x)− ℓ(x, κ(x)) (24)

This is the control invariant terminal set and control Lyapunov
condition.

(2) There exist K∞ functions α1, αf satisfying

ℓ(x, u) ≥ α1(|x|), ∀(x, u) ∈ Z
Vf (x) ≤ αf (|x|), ∀x ∈ Xf (25)

.
Assumption 2.2 is satisfied since the system dynamics f is

continuous, and f(0, 0) = 0, ℓ(0, 0) = 0 and Vf (0) = 0 (for
the new origin in our case).

Assumption 2.3 is satisfied since we only have linear
constraints in our problem, so the set Z is closed and the
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sets Xf ⊆ X is compact. Each set contains the (new) origin,
as you can find in the previous section.

Assumption 2.14 (1) is satisfied since the terminal set Xf
is control invariant and the control Lyapunov condition of
terminal cost is satisfied because our design for terminal cost
is

Vf (x) = x(N)′TPx(N)′

where P is the solution to DARE with the aforementioned
Q and R, which is proved to have the property of Lyapunov
decrease. (2) is satisfied because the stage cost function

ℓ(x, u) = x(k)′TQx(k)′ + u(k)′TRu(k)′

is lower bounded by α1(|x|):

ℓ(x, u) ≥ x(k)′TQx(k)′ ≥ λmin(Q)|x|2 = α1(|x|)

and the terminal cost function Vf (x) is upper bounded by
αf (|x|):

Vf (x) = x(N)′TPx(N)′ ≤ λmax(P )|x|2 = αf (|x|)

B. Design of Terminal Set

As discussed in the previous section, terminal set Xf plays
an important role in the stability of MPC control. It ensures
the MPC optimal control input will be the same as the
unconstrained control input defined by the infinite-horizon
LQR problem. Within this set u = KN (x) = Kx where K
is the optimal LQR gain

When designing the terminal set, the three main principles
we stuck to were the properties of control invariant, constraint
admissibility, and Lyapunov decrease. The last property has
already been satisfied by using the solution P of DARE as the
weight matrix of the terminal cost. The former two principles
are satisfied by constructing a control invariant set under
the state and control input constraints. We use the method
proposed in [10] to achieve this. Here is the algorithm we
used in our code.

The main idea of this algorithm is to search in the evolution
of the system to find two succeeding time steps where the next
set is within the previous set. In our code, we built a constraint
matrix H

H =

[
Hu 0
0 Hx

]
and via the help of the Kaug = [K, I]T , the constraints can
be expressed as[

Hu 0
0 Hx

] [
u
x

]
= H

[
K
I

]
x ≤

[
hu
hx

]
The constraints for the next time step can be expressed as

HKaugAkx ≤
[
hu
hx

]

Algorithm 1: Compute terminal set
Initialization:
K = Unconstrained LQR gain
AK = A−BK
Kaug = [K; I]
k = 0
For all i = 1, 2, ..., m,
x∗i = argmax

x
fi(KaugA

k+1
K x)

s.t.fj(KaugA
t
Kx) ≤ 0 ∀j ∈ 0, 1, ..., s,

∀t ∈ 0, 1, ..., k

If fi(KaugA
k+1
K x) ≤ 0∀j ∈ 0, 1, ..., s

return Xf = {x ∈ Rn|fj(KaugA
t
Kx) ≤ 0,

∀j ∈ 0, 1, ..., s, ∀t ∈ 0, 1, ..., k}

Else k=k+1 and continue

Fig. 4. The computation process of the terminal set. If we get a result like
the left one, we use the green union set to compute in the next step. If we
get a result like the right one, we return the plum red set as the terminal set

By using this algorithm we can build a control invariant set
that won’t violate the state and control input constraints. We
also visualized the result set of this algorithm in the simulation,
it turned out to be a horizon plane at the height of the goal
position. It is predictable since we take the differential flatness
of the quadrotor into consideration.

Fig. 5. The visualized terminal set computed by the algorithm. The red
region is the representation of the plane of the terminal set and the grey ball
is the goal position.
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V. SIMULATIONS

We established numerical simulation and dynamic simu-
lation environments based on Pybullet. In this section, we
present the results of our algorithm implementation and com-
pare three different algorithms in terms of functionality and
performance.

A. Impact of Parameters on Regular MPC Performance

1) The Weight Matrices: To determine the effect of the Q
and R arrays on the MPC results, we conducted experiments
each with controlled variables, for example, maintaining the R
constant while adjusting the values of the Q array in the first
experiment. The results of the three experiments are shown in
Fig.6 and Fig.7.

From Fig.6, it can be seen that as the Q weights increase,
the cost of the system to the state error increases, and the
system is more oriented to reach the target state quickly while
overshooting due to acceleration constraints. The system’s
optimization for state error saturates when Q reaches near 150,
at which point increasing the Q value will have no further
effect.

From Fig.7, it can be seen that as the R weights increase, the
system’s cost to the inputs increases, and the system is more
inclined to reach the target state while managing the cost of
the inputs. When the system’s weights on the inputs are large
enough, there is a static difference in the position state along
the z-direction, which is caused by the weights of the state
errors being obscured by the input weights tend to keep the
UAV still.

Fig. 6. The effect of Q weights on the performance of the system, where
(a)-(f) weights are gradually increased.

Fig. 7. The effect of R weights on the performance of the system, where
(a)-(f) weights are gradually increased.

2) The Prediction Horizon: The prediction horizon also
makes a difference in the performance, the longer the pre-
diction horizon leads to a better solution, but it also results in
an increase in computing time.

Fig. 8. The errors and computation times corresponding to different
prediction horizon H.

We simulated different values of the prediction horizon
and the results are shown in Fig.8 and TABLE.I. From the
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TABLE I
RESULT OF PREDICTION HORIZON

H-Value Computation Time State Error

1 9.31 123.9
5 13.8 114.2
10 20.8 88.1
20 31.1 64.6
50 67.2 52.3

Fig. 9. Tracking results for different MPC controllers.

simulation results, we can see that the computation time grows
and the error decreases as H increases. The computation time
has a linear relationship with H, while the error shows a
nonlinear relationship. H=10 is a balance of time and error.

B. Output MPC for Single UAV

1) Comparison with Regular MPC: Since the Output MPC
needs a smaller horizon than Regular MPC (in our case
the horizon Regular MPC needs is 10 times larger), the
computation time is greatly reduced. Besides, in Regular MPC
the controller will try to find a trajectory that costs the least
energy (by minimizing the input) while in Output MPC the
controller needs to follow the given path. The differences can
be observed in the Fig.9.

C. Output MPC for Multi-UAVs

1) Comparison with Output MPC for Single UAV: The
single UAV output MPC did not take into account the con-
straints between UAVs and obviously could not be applied
to clusters of multiple UAVs, so we first introduced simple
hard constraints for the output MPC. However, as shown in
Fig.10(a), without priority and cost adjustment, the planning
result produces deadlocks and leads to computational crashes.

As shown in Fig.10(b) and (c), we have made adjustments
to the global planner such that the separability of paths is
guaranteed during the global planning process. By doing so,
the tightly constrained mpc works properly but consumes too
much time in global planning and obtains results that are
clearly non-optimal solutions.

Faced with the above problems of complex systems, we
hope to achieve optimal and fast computation by using a pure
mpc method, so we added a slack variable into the inter-UAV
constraints which provides soft margins and punished it in
the corresponding cost functions for avoiding computational

Fig. 10. Comparison of multi-UAVs and single-UAV Algorithms for Output
MPCs, where (a) is the point at which the single UAV MPC algorithm crashes
in responding to a collision, (b) and (c) is the non-optimal obstacle avoidance
result produced by the hard constraint with modified A*, (d) and (e) is the
optimal solution of soft margin constraints without a modified planner.

Fig. 11. Different results with different punishment coefficients.

crashes and realizing optimal solution results. Besides the
inter-UAV constraints are solved online in the whole process,
which ensures a dynamic collision avoidance between UAVs.
As shown in Fig.10(d) and (e), this algorithm was applied to
the most severe collision scenarios and proved to obtain much
better results than the previous solutions.

2) Influence of the Parameters of the Soft constraints:
The punishment coefficient is the most important parameter
for soft constraints, as shown in Fig.11, we tested the effect
of different punishment coefficients on the results. As shown
in Fig. 11(a), when the punishment coefficient is small, the
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algorithm ignores the constraint to follow the target trajectory.
As shown in Fig.11(b), when the punishment coefficient rises
but remains small, the UAV avoids the constraint when it
is very close. As shown in Fig.11(c), when the punishment
coefficient is suitable, the UAVs avoid each other softly. As
shown in Fig.11(d), when the punishment coefficient is high,
the UAVs produce planning results similar to hard constraints.

VI. DISCUSSION

A. Summary

In this paper, we designed several MPC control strategies for
the dynamic system of the quadrotor, which can be applied to
navigation and obstacle avoidance with or without the presence
of a global planner. We also extended it to a centralized multi-
UAV MPC control by adding a slack variable into the inter-
UAV constraints, which has a pretty good performance in
solving the collision between UAVs with a small predicting
horizon. We also visualized the terminal set in the simulation
environment, the result also matches our different flatness
assumptions.

B. Future Work

This work can be extended in the future by adding a Luen-
berger observer to get the ability to reject constant disturbance
in the output under conditions of both state feedback and
output feedback since in reality disturbance is inevitable and
sometimes it is difficult to get full-state feedback.
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Fig. 12. Documentation and Program Composition of the Project.

APPENDIX

The file and program composition of this project is shown
in Fig.12, where the MPC methods are mainly centralized in
the MPC class and the MPC operation program.

Run RegularMPC.py in the drone anaconda environment
to get the regular MPC simulation for a single drone, and
OutputMPC.py to get the output MPC simulation for multiple
drones. OutputMPC uses soft constraints by default, and hard
constraints can be applied by changing the interface of the
MPC class.
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